An Easier Way to Temper Chocolate

Researchers discover a simpler (and greener) tempering method to give chocolate its texture, gloss and snap.
An illustration of an eyedropper adding an ingredient to melted chocolate
Media credits
Media rights

Copyright American Institute of Physics

Meeri Kim, Contributor

(Inside Science) – For a chocolate lover, one of the great joys in life is breaking off a bite-sized piece from a good-quality bar and letting it slowly melt in your mouth. The roughly 600 aroma compounds that make up the intoxicating scent of cocoa -- some of which smell individually like potato chips, cooked meat and other unexpected foods -- are released at once, like a symphony on your palate. 

Key to creating that experience is tempering the chocolate, a complex process involving precise heating and cooling to attain a particular texture. Manufacturers typically use bulky, expensive machines that run melted chocolate through a series of stages to get a tempered batch that can then be molded into bars. 

"What tempering achieves is the right gloss, hardness and snap in the chocolate," said Alejandro Marangoni, a food scientist at the University of Guelph in Canada. "It also makes sure the chocolate has the correct melting point, so that it melts in the temperature of your mouth but not in your hand."

While Marangoni and his colleagues were investigating the chemical components of cocoa butter, which makes up almost 30% of chocolate, they discovered a much simpler way to temper chocolate. By adding more of a fatlike molecule naturally found in cocoa butter to melted chocolate, they quickly and easily produced a batch with the ideal hardness, gloss and texture -- indistinguishable from chocolate tempered the old-fashioned way, the researchers say. The study was published Tuesday in the journal Nature Communications

More food stories from Inside Science:

The Beautiful Patterns Left Behind When Whiskey Dries
The Scientist's Guide to the Perfect Fondue
Physics Can Help Develop New Foods -- Like Crispy Jellyfish Chips

The texture of a finished piece of chocolate largely depends on how the molecules that make up cocoa butter have arranged themselves. This crystalline structure can take on six different forms, but only one -- known as Form V -- offers the texture, gloss, snap and melting profile that chocolate aficionados know and love. Traditional tempering leads to the creation of Form V crystals, but the technique is far from foolproof. Performed even slightly incorrectly, it can produce one of the other crystalline structures, leading to a waxy or crumbly product. 

Marangoni and his colleagues took an unconventional approach to tempering by adding minor components of cocoa butter to the chocolate mixture to see how they changed the overall microstructure. In particular, they found that adding a tiny amount of a fatlike molecule called a phospholipid to melted Lindt chocolate and then rapidly cooling it to 20 degrees Celsius (68 F) promoted Form V crystal growth. The chosen phospholipid was extracted from cocoa butter and originates from cell membranes of the cocoa plant itself.

The researchers ran several experiments comparing their chocolate to the store-bought variety and say the two show equivalent crystal structure and mechanical strength. "And there was no difference in -- we food scientists have this funky name for taste -- the organoleptic properties," said Marangoni. 

The new technique "will allow the small- to medium-sized manufacturer to scale up the tempering, which would mean reducing costs and using less energy," Marangoni said. "All the companies are trying to get better in terms of carbon footprint, and [our method of tempering] will consume a lot less energy."

Author Bio & Story Archive

Meeri Kim is a science journalist based in Los Angeles. She received her physics Ph.D. from the University of Pennsylvania in 2013. Her work has appeared in The Washington Post,, Huffington Post, VICE's Tonic, CURE Magazine, and Wareable. In her free time, she enjoys hiking, cooking, and riding her bike. Follow her at @meeri_kim.